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Abstract

One important routine task in injury research is to effectively classify injury circumstances into 

user-defined categories when using narrative text. However, traditional manual processes can be 

time consuming, and existing batch learning systems can be difficult to utilize by novice users. 

This study evaluates a “learn-as-you-go” machine-learning program. When using this program, the 

user trains classification models and interactively checks on accuracy until a desired threshold is 

reached. We examined the narrative text of traumatic brain injuries (TBIs) in the National 

Electronic Injury Surveillance System (NEISS) and classified TBIs into sport and non-sport 

categories. Our results suggest that the DUALIST “Learn-As-You-Go” program, which features a 

user-friendly online interface, is effective in injury narrative classification. In our study, the time 

frame to classify tens of thousands of narratives was reduced from a few days to minutes after 

approximately sixty minutes of training.
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1 Introduction

The National Electronic Injury Surveillance System (NEISS) dataset consists of a wealth of 

coded variables (e.g. product, diagnosis, body part) that are important for studying the 

causes and circumstances of injuries (1). The NEISS is a national probability sample of 

hospitals in the U.S. and its territories; it is produced by the Consumer Product Safety 
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Commission to collect information about both consumer product related and other injuries. 

It is a nonfatal injury data source for the Centers for Disease Control’s Web-based Injury 

Statistics Query and Reporting System. However, the NEISS coded variables do not always 

allow for the desired specificity, and so the narrative text fields in NEISS are often used to 

create new variables.

The NEISS narrative text has been used in a variety of ways in recent injury studies 

including those examining helmet use (2), magnets as foreign bodies (3), battery exposures 

(4), as well as shopping cart (5) and TV-related injuries (6). In most of these studies, manual 

review processes combined with repeated key word searches were the primary methods 

used. Despite the flexibility of manual review, this process may be subject to non-

standardized procedures and low efficiency; therefore, it can be both error-prone and 

expensive to repeat (7, 8). Computerized methods are needed to complement, if not replace, 

this manual work.

Efforts have been made in developing computerized machine learning approaches to classify 

injury narratives. In a systematic review of that literature, Bayesian probability based 

methods were found to be the most commonly used (9) in injury research due to its 

effectiveness and efficiency of classifying text data. Bayesian methods have been 

successfully applied to various injury classification scenarios including motor vehicle 

injuries classification (10), claims classification (11) and near-miss causes classification (12) 

with state-of-the-art accuracy achieved.

However, most of the cited studies used approaches that required labeling significant 

portions of the data sets when training classifiers. Additionally, the training sets described 

were collected in batch mode rather than through iterations. Large amounts of training data 

are sometimes hard to obtain upfront especially in the medical domain (13). Generally, the 

accuracy of a batch learning system improves with increases in the size of the training set 

(12); however, producing a large training set is time-consuming, and deciding when to stop 

collecting the training data can be very difficult. Also, traditional batch learning systems 

were not designed for novice users and therefore require substantial computer science 

knowledge to achieve the best result.

To make machine-learning programs accessible to novice users, online learning systems 

(sometimes called active learning) have been developed (14). These online learning systems 

are typically characterized by user-friendly web interfaces, and they adopt “learn as you go” 

methods to iteratively train a classifier. Training or labeling large amounts of data is then 

less necessary than when using most batch learning systems (15). These online learning 

systems have been recently used in word sense disambiguation (16), social media and web 

content mining (17) and ambient weave computing applications (18). They have not yet been 

used frequently in healthcare domains, such as injury research.

In this study, we evaluated an interactive learning program called DUALIST. The program 

offers a simple web-based interface, and it can be installed on any operating system. It has 

been previously tested against social network and news data. Our goal was to evaluate this 

program for use in injury research, and we chose sports injury classification as an example.

Chen et al. Page 2

Accid Anal Prev. Author manuscript; available in PMC 2016 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2 Methods

The online learning program chosen, DUALIST, offers the combined benefits of interactive 

machine learning and ease of use (19). DUALIST, developed by Burr Settles from Carnegie 

Mellon University, is a result of recent advances in artificial intelligence (17). The 

DUALIST program is freely available and can be easily installed on any platform (19). 

Using DUALIST, users can define a number of classes and labels for each class. Then, they 

interactively train classifiers through iterations. Each iteration generates a classifier. Multiple 

classifiers can be generated in one session. Different from ensample learning, classifiers 

generated in one session are related so later classifiers build upon the previous ones.

Multinomial naïve Bayes (MNB) model

Each iteration is driven by an underlying probabilistic model called a multinomial naïve 

Bayes (MNB) model which emulates the human decision making process. When performing 

a manual review process of injury classification, one relies on lexical clues such as keywords 

and keyword relations to classify sentences. For example, “fell when playing softball” is 

considered sports related but “jump in bed” is not, and fell, playing softball, jump and bed 
are all key words that contribute to the probability of an injury case belonging to one class or 

another.

The DUALIST program implemented a specific multinomial naïve Bayes (MNB) model 

which is known to be “simple, fast, and [one that] work[s] well for several natural language 

applications.”(20). Naïve Bayes machine learning has also been found to be effective in 

recent injury classification tasks based on batch learning (8, 21). The dualist program 

implemented both a unigram model (i.e. single word) and a bigram model (i.e. a phrase 

including two consecutive words) to calculate the probabilities of words and phrases of a 

sentence. Given the “naïve” assumption, the words of the injury narratives in our cases, are 

considered to be independent from each other. Each narrative is also considered a mixture of 

classes, i.e. sports and non-sports in our study. The probability of a word x generated by 

class yi can be defined as

where θjk = P (fk∣yi) is the probability of generating word fk given class yi, and fk (x) is the 

frequency count of word fk in narrative x. The |x| is the document length which is 

independent of the class, so P (|x|) is a constant. After we dropped P(|x|), we applied the 

Bayes’ rule to the above equation. The posterior probability of a sequence of words belong 

to a class Pθ(yi∣x)can be defined as
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where Pθ (yi) is the probability of class yi and n is the number of classes. The class label is 

assigned to the narrative based on the largest Pθ.(yi∣x). For example, if the Pθ (Sports∣x) is 

0.7 and Pθ (Nonsports∣x) is 0.3, the instance will be assigned to Sports. The original research 

paper of Settles provides additional details (17).

Data

The NEISS dataset is a deidentified dataset freely available on the website of the Consumer 

Product Safety Commission. Because the data is deidentified and individuals cannot be 

readily identified with the data, it is not considered human subjects research by our 

institution. No Institutional Review Board review or an exemption was needed.

We used a NEISS TBI definition recommended in previous research (22, 23). NEISS utilizes 

its own unique coding scheme which includes both body part codes and diagnosis codes. 

The TBI definition used here includes concussions, fractures to the head, and internal organ 

injury to the head. We chose to focus on TBIs, because of the research team’s prior TBI 

related research. We obtained 38,933 TBI cases from the 2009 NEISS dataset.

We did not perform specific text preprocessing tasks, such as abbreviation expansion and 

misspelling corrections, which might be of greater necessity when using other datasets. The 

medical abbreviations used in our data were fairly standard and most of the class-related 

features (words or phrases) were spelled out. We did combine the two NEISS text fields to 

create one narrative sentence for each NEISS record. Each narrative sentence is described 

below as an instance in the language of computer science.

Case definition

In this study, physical activities that are both competitive and recreational were considered 

sports (see examples in Table 1). Leisure activities such as gardening and walking were not 

sports. This definition has been previously used in the literature, see the referenced article 

for greater detail (24).

We prepared a random subset of 500 cases, and each record was labeled sport or non-sport. 

These 500 test cases were an ad hoc held-out set used for the purpose of evaluation only. 

This is not a necessary step when an end user uses the system.

We first experimented with the binary classification task of sport and non-sport injuries to 

introduce active learning to injury researchers using a simple example and to provide a full 

evaluation of its effectiveness through detailed experiments. We then used the program for a 

multi-level classification task using the same dataset. Though this task can be potentially 

more challenging, it is still doable, with unbalanced input data (14). In the multi-level class 

experiment, our rater assigned each injury narrative to one of the three classes: sport injury 

involving only one person (the injured subject), sport injury involving more than one person 

(e.g. injured subject collides with a team player), and non-sport injury. Our rater went 

through 500 randomly selected training cases to generate the classification model, which 

was evaluated against a held-out test set including 500 randomly selected new cases.
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DUALIST workflow

The DUALIST program has a user friendly initialization interface. We configured the 

software for the binary experiment as shown in Figure 1. We chose the class labels (sports, 

non-sports). For each iteration, a fixed but configurable number of new instances can be 

trained, and we chose 10 instances per iteration.

After this initial configuration, the user enters the classifier training phase. DUALIST, as 

implied by its name, implements a dual mode of classifier training. A user can label either 

the instances (i.e. the complete narrative sentence for each NEISS record) or the features 

(i.e. words and phrases extracted from the sentence), or both. The training process is carried 

out through iterations. After each iteration, a new classification model is generated. The 

performance of each classification model can then be evaluated against the test dataset of 

labeled cases. When the performance is deemed satisfactory, the trained computerized 

classifier can be applied to the remaining unlabeled cases. Figure 2 shows the workflow of 

training a classifier.

Figure 3 shows the interactive and iterative training interface. A Submit button on the top 

saves the current model and then populates the container with a new set of instances. After a 

model is generated, the user can use a command provided by the DUALIST program to 

apply the model to the test set and evaluate the test’s accuracy. At any point a user can 

choose to close the program because of satisfaction with accuracy of the classification 

model. We chose to complete 50 iterations, 10 instances each before ending the training 

process.

Experimental design

As described above, a random subset of 500 cases were labeled as a test set and 38,433 

unlabeled cases remained for “learn-as-you-go” training. The label of each narrative in the 

test set was based on inter-user agreement between the two local domain experts (injury 

researchers). The overall agreement rate was over 90%. For those ambiguous cases not 

agreed upon between the injury experts, a third project oversight person decided the label.

Our domain experts used the DUALIST program to train sport injury classifiers interactively 

through multiple iterations with 10 cases trained during each iteration. The online learning 

program does not require users to go through all 38,433 training cases but allows the user to 

stop at any point s/he is satisfied with the classification accuracy. The classification accuracy 

can be checked at any point by running a command line against the defined test set provided 

by the DUALIST program.

After training 500 instances, 50 iterations with 10 instances each, the user stopped when 

achieving accuracy of 90%. DUALIST produces a classification model with each iteration; 

thus, the user created 50 classifiers which contributed to the final model during this training 

process. We use the notation train[n] to denote the last classifier generated by training the 

first n instances to date. Previous research has shown that the dual mode—annotating both 

instances (the full narrative text) and features (keywords or phrases within the narrative text) 

—is the most effective (17) and this was our approach.
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Evaluation

In order to find out at what point the program started to perform well, each trained classifier 

was applied to the test data set and then evaluated. True positive rates (TPR, percentage of 

correctly classified sports injuries of all sports injuries) and false positive rates (FPR, 

percentage of incorrectly classified non-sport injuries of all non-sport injuries) were 

calculated. ROC and AUC were used as metrics to measure the performance of the binary 

classifier.

For each of the 50 classifiers, we varied the probability threshold of the label sports from 0 

to 1 by an increment of 0.01 in deciding the predicted label, resulting in 100 (TPR, FPR) 

data points of an ROC of a classifier. Based on TPR and FPR, ROCs can be drawn as FPR 

vs. TPR. The AUC of each ROC was calculated by estimating an accumulated area under the 

ROC curve. In the literature, a model with AUC between 0.8 and 0.9 is generally considered 

good, and one with AUC between 0.9 and 1.0 is considered excellent (25).

The TBI dataset was unbalanced with respect to the number of sports vs. non-sports cases by 

an approximate 2:1 ratio. The ROC and AUC are considered stable measures regardless of 

the balancing of the data (26). The last classifier obtained was applied later to classify the 

entire dataset. The total time of automated classification was recorded to contrast with the 

manual process. We also plotted the percentage of correctness as a measure of accessing the 

accuracy of each classifier using 0.5 as the threshold for assigning sports class.

3 Results

It took our domain expert(s) approximately 1 hour to train the first 500 instances in the 

training set before s/he stopped. The randomly selected 500 TBI test cases were about 2:1, 

sports versus non-sports related. The last model created 4291 features among which 169 

were user labeled features. Features were mainly noun or noun phrases such as football, 
football_player and bike, as well as verb phrases such as playing_football and riding_bike.

The user experiment results demonstrated that our overall model accuracy consistently 

improved with more samples being trained through the iterative online learning process. 

This is demonstrated in the converging trend of the ROCs of classifiers at different training 

stages, as shown in Figure 4. However, the biggest improvement was found to be between 

the first 50 and the first 200 instances. The AUC for train50, train100, train200, train 400 

and train500 were 0.76, 0.79, 0.88, 0.93, and 0.95 respectively.

As indicated by the AUCs, our injury classifiers were found to start performing well after 

training with as few as first 400 cases in the training set. The TPR quickly climbed to above 

0.85 within a narrow range of FPR of 0 to 0.15 after training with 200 instances. Overall, the 

ROC curves showed that the DUALIST program was working effectively across different 

classification thresholds chosen.

In Figure 5, we plotted the percentage of correctness for all 50 classification models, all with 

the default threshold of 0.5. It was shown that the accuracy quickly converged to near 0.9 

after as few as 20 iterations, which is equivalent to 24 minutes of manual labeling of 200 
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instances. Using the best classifier model obtained, the last one, it took the computer about 3 

minutes to classify the remaining 38,433 unlabeled instances. By contrast, this same task 

would take a person approximately 78 dedicated hours to finish. This 78 hour time estimate 

is based upon the number of TBI cases in our database and the fact that it took raters an 

average of 24 minutes to label 200 instances, but it does not take into account the use of key 

word searches or other time saving methods. Therefore, we achieved about 1560 times 

efficiency improvement by using a computerized classifier trained by a novice user using the 

DUALIST program.

In a separate experiment, evaluating our multi-level classification task, we found that our 

interactively constructed multi-level classifier achieved a level of accuracy comparable to 

that seen in the binary classification task: 84 % accuracy, and 0.90 overall AUC. The overall 

AUC was calculated as a weighted average of the AUC of three classes based on class 

distributions. The AUC of “sport injury with only one person involved” class was the lowest, 

AUC=0.87. The AUC of “sport injury with more than one person involved” class was the 

highest, AUC=0.96. The AUC of “non-sport class” was 0.89.

Discussion

In this study, we evaluated a computerized online learning program for the binary 

classification task of sports vs. nonsports related TBIs. Our efforts were among the first to 

use and evaluate an online learning program like DUALIST in a real world application for 

injury research. We assessed its effectiveness and performance using the ROC, AUC and 

accuracy measures. Our experiment generated good classifier models after training as few as 

500 narratives by a novice user.

Our binary classifier accuracy outperformed previous experiments using the same DUALIST 

system: 90% accuracy (ours) vs. 70% accuracy (average accuracy in the other research) (27). 

Our performance improvement may be due to several reasons. First, our raters were trained 

injury researchers who were knowledgeable in the subject matter to ensure consistent 

labeling. Second, our classification task was simpler than the task of sentiment classification 

in the other study. However, it should be noted that the previous experiment used a different 

narrative dataset and was conducted in a multi-category situation (8).

In our separate multi-level experiment, we achieved comparable accuracy in a classification 

task involving three classes: 84% accuracy and 0.90 AUC overall. In sum, we found the 

DUALIST program capable of producing state-of-the-art accuracy in both binary and multi-

class situations requiring a minimum of effort from novice researchers. Our conclusions on 

the usability and performance of the Dualist program were consistent with previous research 

(17, 19).

5 Limitations

The DUALIST program was designed to be used by one user at a time. We have not done 

experiments on classification tasks that involve user collaborations. Additionally, the sport 

and non-sport classification schema is relatively simple. Other applications may have more 

complicated classification scenarios. In those situations, one may have to go through more 
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narratives during the interactive training phase in order to have a good coverage of the 

samples from each class. While our classification accuracy quickly converged to a 

satisfactory level after training as few as 200 cases, this may not true for multi-class 

applications, or with different topics, or when dealing with unbalanced datasets (28, 29). We 

also have not yet experimented with classification using a more heterogeneous narrative 

dataset. Our input data were pre-filtered TBI injuries. Given a general dataset including all 

types of injuries, the signal in terms of sports injury key words may not be as strong because 

sports injury would be a much smaller injury mechanism category in the entire injury 

database. Therefore, for classification tasks involving a specific subcategory of injury, we 

recommend first sub-setting the data to create more a focused input set.

Finally, similar to other Bayes-based machine learning systems, the DUALIST program 

classifies cases by keywords rather than context and semantics which could be more useful 

but latent in the text. For example, if an object that caused the injury was from a previous 

sports activity, it is possible for the DUALIST program to still classify it as a sports-injury 

rather than as an existing injury.

6 Conclusions

To our knowledge, the DUALIST program is the first readily available and free online 

learning program for novice users with machine learning-based classification needs. It has 

been previously shown to effectively classify various types of corpus including news, twitter 

data, and reviews among others; it has worked well across application domains (14, 19, 27). 

Our effort is among the first to test it with novice users from the injury domain as part of a 

larger effort to promote active learning systems.

Based on our evaluation, this program was found to be easy and flexible to use for first time 

users. It provided an interactive interface that was not available in traditional machine 

learning systems. One trains as he/she goes and can flexibly stop at any time point. The 

ability to “train-as-you-go” using an interactive learning program like DUALIST 

substantially lowers the technical threshold for users new to a machine learning system.

The DUALIST program is able to save labor cost dramatically without compromising the 

accuracy. In our case, to generate a good classifier requires no more than an hour of manual 

work. The interactively generated reusable classifier could dramatically improve the 

efficiency of classification tasks which have previously been done mainly through manual 

means.
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What is already known on the subject

• Injury classification can be a labor-intensive task in injury research.

• Traditional batch learning systems, which are designed for 

classification purposes, are not accessible to novice users.
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What this study adds

• The “Learn-As-You-Go” machine learning program DUALIST was 

evaluated by novice users to classify sports injuries using National 

Electronic Injury Surveillance System (NEISS) data.

• The quantitative evaluation of the program using machine learning-

based measures suggested that the effectiveness of this program 

achieved near-the-state-of-art accuracy.

• The efficiency of classification was improved by nearly a thousand fold 

using a computerized automatic classifier when compared to traditional 

manual methods.
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Highlights

• Manual classification of NEISS injury narratives has been traditionally 

very labor-intensive.

• Batch learning systems are hard to use by non-technical injury 

researchers.

• The “Learn-As-You-Go” DUALIST system used in this study 

represents an interactive yet effective way of machine learning-based 

injury classification.
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Figure 1. 
DUALIST online learning experiment configuration
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Figure 2. 
Training workflow
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Figure 3. 
DUALIST interactive and iterative training interface
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Figure 4. 
Improvement of classification accuracy through iterative training
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Figure 5. 
Classification accuracy improvement through iterative training
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Table 1

Sports categories

Sports Category Examples

Competitive sports Basketball, cycling, exercising, football, baseball/softball, soccer, ice skating/skateboarding/snowboarding, gymnastics/
cheerleading, playground equipment, etc.

Recreational sports Bowling, fishing, hiking, biking, jogging, horse riding, all-terrain vehicle riding.
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